Nonoscillation criteria for fourth order elliptic equations
نویسندگان
چکیده
منابع مشابه
Oscillation and Nonoscillation Criteria for Second-order Linear Differential Equations
Sufficient conditions for oscillation and nonoscillation of second-order linear equations are established. 1. Statement of the Problem and Formulation of Basic Results Consider the differential equation u′′ + p(t)u = 0, (1) where p : [0, +∞[→ [0, +∞[ is an integrable function. By a solution of equation (1) is understood a function u : [0,+∞[→] − ∞, +∞[ which is locally absolutely continuous tog...
متن کاملNonoscillation criteria for second-order nonlinear differential equations
Consider the second order nonlinear differential equations with damping term and oscillation’s nature of ( ( ) '( )) ' ( ) '( ) ( ) ( ( )) ( '( )) 0 r t x t p t x t q t f x t k x t 0 t t (1) to used oscillatory solutions of differential equations ( ( ) '( )) ' ( ) ( ( )) ( '( )) 0 t x t t f x t k x t (2) where ( ) t and ( ) t satisfy conditions given in this work paper. Our ...
متن کاملNonconforming tetrahedral finite elements for fourth order elliptic equations
This paper is devoted to the construction of nonconforming finite elements for the discretization of fourth order elliptic partial differential operators in three spatial dimensions. The newly constructed elements include two nonconforming tetrahedral finite elements and one quasi-conforming tetrahedral element. These elements are proved to be convergent for a model biharmonic equation in three...
متن کاملConcentration Phenomena for Fourth-order Elliptic Equations with Critical Exponent
We consider the nonlinear equation ∆u = u n+4 n−4 − εu with u > 0 in Ω and u = ∆u = 0 on ∂Ω. Where Ω is a smooth bounded domain in Rn, n ≥ 9, and ε is a small positive parameter. We study the existence of solutions which concentrate around one or two points of Ω. We show that this problem has no solutions that concentrate around a point of Ω as ε approaches 0. In contrast to this, we construct ...
متن کاملSOME n - RECTANGLE NONCONFORMING ELEMENTS FOR FOURTH ORDER ELLIPTIC EQUATIONS
Motivated by both theoretical and practical interests, we will consider n-rectangle (n ≥ 2) nonconforming finite elements for n-dimensional fourth order partial equations in this paper. In the two dimensional case, there are well-known nonconforming elements, such as the Morley element, the Zienkiewicz element and the Adini element, etc (see [1-4]). In a recent paper [10], we have discussed the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Hiroshima Mathematical Journal
سال: 1975
ISSN: 0018-2079
DOI: 10.32917/hmj/1206136781